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SUMMARY 

A finite element (FE) analysis of experimentally observed creeping thermal plumes in a medium whose 
viscosity is strongly temperature-dependent is performed. Such plumes are considered to play an important 
role in numerous geological processes and numerical modelling is often the only option to study their 
physics. Initial simulations by means of the general-purpose Galerkin finite element package NACHOS-I1 
demonstrated serious deficiencies of the method in modelling plumes with large viscosity contrasts, in spite 
of several options for the solution (mixed or penalty formulation) and the elements (continuous or 
discontinous pressure). In agreement with observations from FE simulations of isothermal Stokes flow in 
other studies, we have isolated the violation of the div = 0 or  incompressibility constraint as the major 
culprit in the failure of the FE method. It is demonstrated that the a posteriori computed discrete divergence 
(DDIV) can be used as a diagnostic tool to evaluate the reliability of the FE solution and to  rank the 
solution and element options provided in the NACHOS code. On the basis of these considerations, the 
combination of the mixed method with a Q2-P, (discontinuous pressure) element turns out to be the most 
suitable for the present plume problem but is still unable to sufficiently enforce the div = 0 condition. With 
a goal to remedy this detrimental behaviour, several F E  modifications and new approaches have been 
taken. These include: (i) use of a new scaling option for the governing equations which has the effect of 
equilibrating the stiffness matrices and thus improving their condition; (ii) implementation of several 
iterative solution techniques such as  the iterated penalty and the Uzawa algorithm for the augmented 
Langrangian to better accommodate the dual role of the pressure; (iii) use of a multistep Newton method 
to better handle the high non-linearity of the coupled flow/transport problem. Although each of these 
options (or a combination of them) is able to improve on the quality of FE solution, the most startling 
amelioration has been gained with option (iii). Use of the latter resulted in very satisfactory modelling of 
the experimentally observed plumes. 
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1. INTRODUCTION 

Buoyancy-induced plumes in viscous fluids arise in numerous technical,' environmental' and 
disciplines. Many situations in mechanical engineering are governed by the presence 

of plumes (convective heat transfer'). Aerosols in the atmosphere and contaminants in the ocean 
or in groundwater are often transported in the form of plumes.' In recent years there has been 
increasing evidence of the importance of buoyant heat and mass transport processes in various 
geological phen~mena.'.~ On a large scale these may include deep-mantle plumes originating 
at the base of the earth's mantle' which manifest themselves surficially in the form of hot spots. 
Among the latter the island of Hawaii is the most prominent example. On a smaller scale 
magmatic flows in dykes (volcanic activity) or salt diapirs'+ exhibit these processes. 

From a fluid-dynamical point of view, many of the above geological flow processes can be 
characterized as viscous creeping flow with very low Reynolds numbers, i.e. they can in principle 
be modelled as Stokes f l o ~ . ~ - ~ * ~  However, such a simple analysis is hampered by the fact that 
thermally activated fluid flow in the earth's interior is rheologically highly non-linear and in 
particular has a very strong dependence of its viscosity on the temperature (see References 2 
and 7 for reviews). In the earth's mantle, absolute viscosity contrasts p,,,,/pin, between the 
ambient medium and the plume interior are assumed to be of order O(103-108).7-'0 Such 
conditions are very difficult to attain in the laboratory7 and most of the experiments done so 
far to mimic highly temperature-dependent viscous  plume^^*^-'^ have settled for much lower 
viscosity contrasts. To model such plumes theoretically, asymptotic analytical methods (such as 
the 'rigid Stokes' limit)7-9*"*'2 have been proposed. However, these analytical techniques often 
miss important physics of the p r ~ b l e m , ~  such as internal fluid circulation in the interior of the 
plume head (see Figure 1) and diffusional heat and mass loss (and consequently loss of buoyancy) 
from the plume into the surrounding medium. Depending on the assumptions used in these stu- 
 die^,^*"-'^ several rise laws (plume height h versus time t )  in the form h - tS with B ranging 
from $ I 3  through 3'" to 2'' have been derived theoretically or deduced from experiments. Figure 
2 shows some typical results of these experimental and analytical studies and of the more recent 
laboratory investigation of C~ul l ie t te .~  As will be shown in the present paper, the results of his 
experiments are also well matched by the proposed new finite element analysis. 

The discrepancies among the various analytical and experimental studies (Figure 2) and the 
technical difficulties in performing the latter,7 but especially their limited applicability to the 
modelling of more realistic geological plumes, make a full numerical approach highly desirable. 
Several authors have attempted this by solving the Boussinesq equations (see Section 2) for free 
convection under the Stokes flow assumption (low Reynolds number and infinite Prandtl 
number) using finite difference' or, more commonly now, finite element me th~ds . '~* '~* ' '  
However, these simulations are barely applicable to the modelling of the initialization and growth 
of a viscous plume such as shown in Figure 1, since they (i) have only incorporated moderate 
viscosity contrasts and (ii) are more suitable to mimic large-scale mantle convection. 

The finite element analysis in the present study has grown out of the need to model 
experimentally observed plumes7 (Figure 1) and to predict numerically the appropriate rise laws 
(Figure 2). The base code used initially has been the general-purpose Bubonov-Galerkin finite 
element package NACHOS-11' for incompressible flow and heat transfer problems. This code 
is a greatly modified version of the original code NACHOSI9 and has been applied successfully 
to numerous fluid-mechanical problems. ' 8.20 NACHOS-I1 provides a variety of element choices 
(triangular, eight-point serendipity, nine-point Langrangian) for the velocity and a choice of 
continuous (Taylor-Hood family) or discontinuous (Crouzeix-Raviart family) elements for the 
pressure,"-23 which can be used in conjunction with either a classical mixed (integrated) or a 
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Figure 1. Photograph 
centre of the plume is 

of a thermal plume in corn syrup with temperature-dependent viscosity.’ The temperature in the 
about 80 “C as compared with xmb = 0.1 “C in the ambient medium, which results in a viscosity 

contrast of about 6.4 x lo4 

penalty formulation. In spite of these options, we have encountered numerical difficulties and 
eventually breakdowns of the code in the early stages of a transient plume simulation. 

In an effort to understand the origins of and develop possible cures for this disastrous 
behaviour, we have focused on one of the most difficult aspects of finite element analysis of 
incompressible viscous flow, namely the inherent difficulty of any numerical primitive variable 
FE method in exactly satisfying the div = 0, incompressibility or mass conservation con- 
straint.’ 1 3 2 3 - ’ 7  Th e reasons for this unsatisfactory behaviour which leads to numerical in- 
stabilities and eventually to breakdown are manifold and by no means fully ~ n d e r s t o o d . ’ ~ ~ ’ ~  
The most enlightening discussion with regard to this topic is that of Pelletier et aLZ6 Since these 
issues are the centrepieces of the present paper, we mention here only the key words: the dual 
role of the pressure to both satisfy the continuity equation and balance the viscous and buoyancy 
terms in the momentum equation; the inadequacy of the chosen pressure space (poor choice of 
elements, locking and non-locking elements) to fulfil the div-stability (LBB) condition; the 
ill-conditioning of the stiffness matrices; and the inappropriate choice of the penalty parameter. 
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Figure 2. Experimental and analytical rise laws derived for a viscous plume similar to Figure 1 (xmb = 0.1 “C). Notations 
and references: experimental, Coulliette;’ W / L ,  Whitehead and L ~ t h e r ; ’ ~  O/S ,  Olson and Singer;I4 C/C, Griffiths and 

Campbell’2 

Pelletier et dZ6 also propose some possible cures to better enforce the incompressibility 
constraint: enlargement of the pressure space through the use of discontinuous pressure elements; 
scaling to improve the condition of the stiffness matrices; and iterative refinement of the pressure 
by either an iterated penalty or an augmented Lagrangian method (Uzawa a l g ~ r i t h m ) . ~ ~ * ~ ~ - ~ ~  
Gunzburger” also advocates the use of an iterative penalty method.21.22 This investigation is 
essentially an extension and practical application of these proposed cures. 

The above issues have so far mostly been investigated for the steady state isothermal Stokes 
problem in Cartesian co-ordinates and it is not clear how far they apply to the transient FE 
analysis of a buoyant plume in axisymmetric, cylindrical geometry, whose viscosity is strongly 
temperature-dependent (Figure l).’ The precise modelling of such a plume is the ultimate 
objective of the present paper. Towards this end we will first diagnose and analyse the possible 
reasons for the numerical instabilities encountered in the original FE formulation, using the 
above key words as a guideline. Through computation of the discrete divergence, it will be shown 
that the failures of the FE method used are indeed related to the poor satisfaction of the div = 0 
condition. Following suggestions of Pelletier et ~ l . , ’ ~  we then investigate several scaling options 
for the governing equations and implement some of the iterative methods mentioned above. 
Finally we present a refined multistep Newton method which accommodates better the high 
non-linearities in the plume problem. It will be shown that certain combinations of these options 
are able to remedy most of the fallacies of the original FE formulation and allow us to model 
the experimentally observed plumes of Coulliette7 very satisfactorily. 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

Governing equations 

The physical problem of a thermally buoyant plume is described by the Navier-Stokes 
equations, the continuity equation for incompressible fluids and the energy equation. Assuming 
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the usual Boussinesq approximation,' these equations are given respectively by 

aui 
- = 0, 
axi  

aT aqi 
P a t  P J  a x j  a x i y  

aT 
pc - + p c  u . - =  -- 

where 

is the stress tensor and 
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is the heat flux vector. Notations in equations (1H5) are: t ,  the time; ui, the velocity component 
in the xi-co-ordinate direction; p ,  the non-hydrostatic pressure; T, the temperature; p, the density; 
p, the dynamic viscosity; c,,, the heat capacity; k,  the thermal conductivity; a, the coefficient of 
thermal expansion; Kef, a reference temperature at which buoyant forces are zero; 6,, the 
Kronecker tensor; and g i  = (0, 0, g ) ,  the gravitational acceleration. 

Non-dimensionalization 

It is often convenient to non-dimensionalize equations ( l j ( 3 )  to reduce the number of physical 
parameters and to get some indication of the relative importance of the various terms in the 
equation. In a theoretical infinite precision computational environment the choice of scaling has 
no effect on the solution. In finite precision floating point arithmetic, however, a poor choice 
of scaling may result in unacceptable round-off error. 

As will be shown in a later section, the finite element method reduces the continuum equations 
(1H3) to a set of non-linear matrix equations defined on a grid. Pelletier et ~ 1 . ~ ~  observed that 
a possible reason for the poor satisfaction of the incompressibility constraint in Stokes flow may 
be ill-conditioning of this matrix system. The large condition numbers may be a consequence 
of huge differences in the magnitudes of the various elements in the matrices. A key aspect to 
remember during these discussions is that the major physical processes acting during plume 
formation and development are the pressure, viscous and buoyant forces. Any valid non- 
dimensionalization will maintain a balance between the magnitudes of these forces. We will 
consider how three different scalings affect the relative sizes of the relevant matrix terms. These 
considerations will lead us to the choice of the appropriate scaling which then will be evaluated 
in the numerical computations. 

Pr-Ra-non-dimensionalization. A widely used scaling technique for thermally convective flow, 
particularly in geophysical fluid dynamics, is the Prandtl-Rayleigh number f~rrn.'*'~*'~~'~~~~ It 
can be obtained by defining the non-dimensional quantities 

t' = tD/h2,  X' = x/h,  U' = uh/D, P = Ph2/PJ4 

rij  = Tijh2/prD,  T = T A T ,  P' = d P r  > 
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where D = k/pc ,  is the thermal diffusivity, AT = T - Tef, h is a characteristic length scale (taken 
as either the height of the tank or the size of the heater plate) and p r  is the reference viscosity 
of the ambient fluid. This puts equations (1)-after eliminating the ground state hydrostatic 
pressure pgi-and (3) in the form (primes are dropped) 

a T . .  
= Ra(T - Ter)ez + 2, 

a x j  

where Ra = crgATh3/vrD is the Rayleigh number, Pr = vr /D  is the Prandtl number, v, = p r / p  is 
the kinematic viscosity and e, is the unit vector in the vertical direction. 

Using the tank height as the length scale h in this formulation for a plume experiment with 
Kmb = 0.1 "C (see Figure 1) results in Ra = 6.5 x lo6 (see Table I). Such a large value of Ra 
places too much weight on the buoyancy term in the momentum equation (6a). The result of 
this overemphasis on buoyancy is an ill-conditioned system whose velocity field does not satisfy 
the continuity equation (2). We will discuss numerical examples of this scaling in a later section. 

Pr-Gr"2-non-dirnensionalization. This scaling technique is more commonly used in engineering 
fluid and is obtained by defining the non-dimensional quantities 

t' = tuo/h, XI = x / h ,  u' = u/uo, P' = P / P U &  

T i j  = T i j / P U &  T = TAT, P' = PlPr 7 

where uo = (gcrATh)'" is another characteristic velocity scale. This results in 

where Gr = Ra/Pr = agATh3/v,2 is the Grashof number. 
This scaling is closer to maintaining the proper balance between viscous forces and buoyant 

forces for the plume problem. This proper balance, however, is due more to good fortune than 
to proper scaling based on physical considerations, since the Grashof number is small for the 
cases under consideration here (e.g. Gr = 3 x for qmb = 0.1 "C; see Table I). For cases 
with a very large Grashof number (Ra % Pr) this scaling would also place too much emphasis 
on the buoyancy. 

Pr-non-dimensionalization. In the following we present a new scaling option which has been 
found to be very advantageous in the present thermal plume problem, particularly for high 
viscosity contrasts. In this approach we non-dimensionalize the governing equations using 

t' = tuo/L, x' = x/L, u' = u/u,, PI = PIPScrATL, 

5Ij = zij/pgctATL, T' = TIAT, P' = PlPr  9 
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where 
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L = (p ,D/pg~~dT)"~,  u0 = D/L,  AT = Theater - K m b ,  pr = p a m b .  

Substitution of these quantities in the governing equations (1) and (3) results in 

1 aui aT. .  
~r at a x j  - (- + uj 2) = (T  - Tef)ez + 2, 

dT dT aZT 
- + u . - = -  
at ax j  ax: '  

We call this the Prandtl number non-dimensionalization approach since only Pr occurs in the 
equations. However, a second parameter does appear (though not explicitly), namely the 
'variable' length scale L defined as above. One notes from the definition of L that the latter has 
the effect of normalizing the Rayleigh number to R a  = 1. This is done over the AT-term, i.e., 
because the heater temperature Kealer is kept constant in the experiments, over the ambient 
temperature Tam,,. In order to restore the physical balance between the buoyant and the pressure 
plus viscous forces, the whole set of equations is now non-dimensionalized with L computed in 
this way. This means that unlike in the earlier two scaling options, where L is constant and 
equal to either the height h of the container or  the size of the heater, L will now be dependent 
on AT. As such, the strength of the buoyancy, which has formerly been described through Ra,  
is now expressed in terms of L. Hence the equations are solved in a rectangular domain (Figure 
3) whose vertical dimension is to be computed from h' = h/L and which in turn is dependent 
on the ambient temperature K m b  of the plume experiment modelled. For example, for 
Kmb = 0.1 "C, Table I lists a value L = 1.58 cm. With the vertical height h of 69 cm for the real 
tank (see following section), this results in a scaled height h' of 43.7 cm for the computational 
domain. Table I shows that compared with the range of variation for Ra and Gr, which extends 
over several orders of magnitude, that of L is significantly less, which is why this scaling option 
behaves better in the numerical computations. In fact, as will be shown in the numerical 
computations, a better algebraic conditioning of the discretized FE equations results from this 
scaling option. 

Viscosity law 

Equations (1 )  and (3) are coupled by an equation of state for the viscosity p as a function of 
temperature T. For corn syrup the viscosity experiments of Coulliette7 result in a best-fitting 
law that can be written in the form 

(8) p ( ~ )  = 1 0 ( A + B / T + C / T 2 )  

where A,  B and C were determined via regression as 20.6, - 14,990 and 3,076,200 respectively, 
p(T)  is in ( P a s )  x lop3 and T is in kelvins. Depending on the temperature differences AT 
between the plume interior and ambient medium, which range between about 50 and 100 "C in 
the experiments, equation (8) results in viscosity contrasts pamb/C(int of order o(1o2-1o7). 

The values of the other physical parameters used in the computations are Theater = 100 "C, 
D = 2.2 x cm2 s- ' ,  c p  = 0.7 cal g- '  K-'  (both are assumed independent of temperature) 
and LY = 3.5 x lop4 K- '  . Table I lists the values for the temperature-dependent parameters p 
and p, as well as the values for Pr,  Gr, R a  and the length scale L obtained with the ambient 
temperatures Tam,, of 25, 0.1 and -26.1 "C used for the three model experiments. 
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Table I. Numerical values for the density p, the reference dynamic viscosity p,, the Prandtl 
number Pr, the Grashob number Gr, the Rayleigh number Rn and the length scale L (used 
in the new Pr-scaling) for the three model experiments with ambient temperatures Tarn,, of 25, 

0.1 and - 26.1 "C 

Tamb(oC) P(g Cm-3) M a  s) Pr Gr Ra Ucm) 

25.0 1.42 84.9 2.7 x 1 0 5  26.0 6.5 x lo6 0.37 
0.1 1.43 8.7 103 2.8 1 0 7  3.0 x 1 0 - 3  8.4 104 1.58 

- 26.1 1.45 2.1 x 1 0 7  6.5 x 1 0 1 0  5.5 x 1 0 - 1 0  36.0 19.43 

Geometry and boundary conditions 

Boundary conditions have been chosen so as to model the rise of an axisymmetric buoyant 
thermal plume above a circular heater plate in an open rectangular container (Figure 3) of 
dimensions 0.79 x 0.79 x 0.69 m3 (see Reference 7 for experimental details). Thus the computa- 
tions are performed in an axisymmetric cylindrical co-ordinate system (r  = xl, z = xz), employ- 
ing the appropriately reformulated form of the governing equations (6) and (7) for such a 

u = v = O  T = T a m b  

a . a  7 . 5  1 5 . e  2 2 . 5  

U = V = 0 q = 0 (outside heater) 
Figure 3. Sketch of geometry, grid and boundary conditions used in the computations 
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~ y s t e m . ~  This means for the r = x,-component in the momentum equation (6)  an additional 
term --pul/r2 in the viscous term and for the energy equation (7) a term (l/r)aT/dr in the diffusion 
term. As will be shown in the numerical simulations by comparisons with computations in an 
ordinary (x, y) Cartesian co-ordinate system, these r-dependent terms lead to significant compu- 
tational difficulties in the axisymmetric case and are the reason why the latter is intrinsically 
much harder to solve numerically than the Cartesian case. 

The centre of the plume is located at x1 = 0 and forms the symmetry boundary, i.e. 
u ,  = q1 = 0. All the other boundaries are assumed to be no-slip boundaries (ul = u2 = 0). The 
temperature is assumed to be the ambient temperature on the top and side boundaries, i.e. a 
Dirichlet boundary condition T = Kmb is imposed. Along the bottom boundary (x2 = 0), perfect 
insulation (q2 = 0) is assumed, excluding the heater where a Neumann boundary condition for 
the heat flux qi (calculated from the adjustable electric power of the heater) is imposed. In some 
of the computations this heat flux was specified as being time-dependent. Such an approach not 
only better mimics the experimental conditions but also turned out to be beneficial for filtering 
out numerical instabilities which occurred occasionally during the initial start-up phase of a 
transient FE simulation. Figure 3 illustrates the geometry, the named boundary conditions and 
a typical FE mesh. The latter is strongly refined towards the plume axis (r = 0) to accommodate 
the strong horizontal velocity and temperature gradients occurring there. Details of the choice 
of the FE grid and its implication on the numerical solution will be presented later. We emphasize 
again that in the case of the new Pr-scaling option the effective vertical dimension of the 
computational domain is computed from the length scale L as listed in Table I. 

3. FINITE ELEMENT METHOD 

Galerkin formulation for mixed and penalty methods 

The core FE code employed in the present study is the general-purpose 2D FE package 
NACHOS-11,’’ which is based on a classical (Bubonov) Galerkin weak formulation2’*22 for 
equations ( l t (3) .  It can be used either as a mixed (integrated) (u, u, p)-method or as a penalty 
method. For an appreciation of the limitations of these techniques in solving plume flow and 
of the proposed modifications, their theoretical foundations will be presented in the following 
(see Reference 18 for details). 

A discretization of the domain Q c Iwz in finite elements Qh is assumed. The finite element 
space for both the velocity u = (u, u ) ~  and the temperature T is defined by Vh c HA@) and that 
for the pressure p by P h  c Li(Q), where HA(R) is the Sobolev space with one square integrable 
derivative and whose elements vanish on the boundary r of Q, and L;(Q) is the space of square 
integrable functions having zero mean over Q.” 

Using the test functions vh E Th E Vh in equations (1) and (3) and qh E Ph in equation (2), one 
obtains the discrete Galerkin equations (weak formulation) 

am( uh, vh) + a(uh, vh) + c(uh, uh, vh) + b(vh, p h )  = (fu, vh), 
at (9) 

amT(Th, vh) 

at 
-t aT(Th, vh)  + c,(Th, Th, vh)  = (fT, vh), 

where m ( - ,  .), u ( - ,  .), b( . ,  .) and c(., .) are bilinear forms” describing the volume integrals 
for the time derivatives (mass matrix), the diffusion, the pressure and the incompressibility 
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term (dual role of the pressure) and the convective terms respectively; f, and f, include the 
buoyancy term and heat source terms respectively and terms due to natural boundary conditions 
on arising from the application of Green's theorem to the volume integrals. Equations (9) and 
(10) describe the Galerkin method for the Navier-Stokes (NS) equations in the general mixed 
or integrated velocity-pressure (u, p) formulation where the incompressibility (divergence-free) 
constraint (10) is explicitly enforced by solving equations (9) and (10) simultaneously. 

The second FE option to be applied is the penalty method, which is becoming more widely 
used in FE computations.2'*22 Here the incompressibility term (10) is penalized by the pressure 
in the form 

(12) 

where E 4 1 is an arbitrary (see discussion in the next section) penalty parameter. Equation (12) 
provides an explicit expression for the pressure. Substituting it in the discretized NS equation 
(9) eliminates the pressure from the problem and so reduces the total number of degrees of 
freedom of the problem. 

To get the discrete matrix version of the problem in the two formulations, local interpolating 
functions for u = (u, u)~, p and T are introduced on the element level. Thus one has u = vhTui, 
p = qhTpi and T = vhTT, where ui ,  pi and are the corresponding nodal values of the elements 
chosen. Substituting these expressions in equations ( 9 t (  1 l), one obtains the local or, after 
elementwise assembly, global matrix system 

W U h ,  qh> = 0, qh>, 

(7 :)( WWi)( C(u) _+QK!u,T) -Q 0 B(T) 0 )(;) = ( ':I) (13) 
o o N aTpt 0 0 D(u) + L(T) w, u) 

for the integrated method and 

B(T) )( ") = ( F(T) ) (14) M 0 au/at C(u) + K(u, T) + (l/&)QM, 'Q' 

( 0  N)(aT,aJ( 0 D(u) + YT) T G(T,u) 

for the penalty method. Notations are: M, M, and N, the mass matrices for velocity, pressure 
and temperature respectively; C and D, the advection matrices for velocity and temperature 
respectively; K and L, the diffusion matrices for velocity and temperature respectively; Q and 
QT, the matrices associated with the gradient operator; B, the buoyancy matrix; F(T) and G(T, u), 
the forcing functions (source terms) and natural boundary conditions in the momentum and 
energy equations respectively. 

Time integration and matrix solution 

formulations can be formually written as a non-linear system of ODES in time: 
The Galerkin equations in both the integrated (equation (13)) and penalty (equation (14)) 

- ao - 

at 
M -- + K(u, T)O = F(u, T), 

where 0 = (u, p, T)'. For the time integration of equation (13) an explicit-implicit predictor-cor- 
rector method is employed in the NACHOS-I1 code.'* A frontal method (Gaussian elimination 
based on element ordering) is used for the solution of the matrix systems arising in the implicit 
time discretization of equation (13) or (14). Both a first-order forward Euler predictor and 
backward Euler corrector and a second-order Adams-Bashforth predictor and trapezoidal 
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(Crank-Nicholson) corrector are available. In spite of the increased accuracy of the second-order 
methods and the possible use of larger time steps, we have found it extremely helpful to take 
advantage of the strong damping characteristics of the first-order Euler method" to filter out 
solution instabilities which occur often in the initial stages of a transient plume simulation. 

Note that in the formulations of equations (13) and (14) the temperature T in the energy 
equation is implicitely coupled via the buoyancy term in the momentum equation to both the 
velocity u and the pressure p .  This is unlike many other FE or FD techniques for coupled 
flow/heat problems (free con~ection),~'  such as in the predecessor of NACHOS-11, NACHOS,19 
where the momentum and energy equations are solved consecutively. Such a coupled approach 
should in principle result in a better representation of temperature and velocity at each time 
step, but at the expense of increasing the number of degrees of freedom of the problem. Moreover, 
as will be discussed later, there is some evidence that the implicit coupling of u and T might 
accentuate the overall non-linearity of the plume problem. 

Theoretical and practical dificulties associated with the divergence-free condition in mixed and 
penalty methods 

The success of an FE analysis of the coupled momentum/energy problem by either the mixed 
or the penalty method is directly related to the solvability of the global matrix systems (13) and 
(14) respectively and the uniqueness of the solutions obtained for u = (u, v ) ~ ,  p and T. Nearly all 
theoretical and practical studies with regard to this issue have been performed for the isothermal, 
pure Navier-Stokes problem or, more precisely, the linear, steady state, elliptic Stokes problem 
(low-Reynolds-number creeping flow.' 1*24-27 Although our numerical simulations indeed show 
that the results of these investigations cannot be totally generalized to the modelling of a (highly 
non-linear) viscous plume, they provide valuable guidelines on how to tackle the problem 
successfully. In the following we therefore discuss some of these issues with regard only to the 
isothermal, steady state Stokes problem. 

For convenience we extract the relevant matrices for the Stokes problem from equations (13) 
and (14) to obtain 

for the mixed (integrated) method and 

[K + (1/E)QM, 'QT]u = f, 

QTu + &M,p = 0 

for the penalty method. 
The solvability of the system (16) is closely related to the concepts of the divergence-free 

(div = 0 or incompressibility) constraint b(uh, qh)  = 0 (equation (10)) (or its discrete matrix form 
QTu = 0) and of the pressure modes of the s y ~ t e m . ~ ~ ~ ~ ~  The pressure q h ( p )  plays a dual role in 
both enforcing the div = 0 condition and balancing the momentum forces in the Stokes equation. 
This can be clearly seen when viewing the incompressible Stokes problem as a constrained 
minimization problem2'~22 with a discrete Lagrangian L in the form 

(19) L = ~ u ~ K u  - uTf + pQTu 

where p in the last term acts as a Lagrangian multiplier to enforce the div = 0 condition. 
Minimization of equation (19) results directly in the matrix system (16). 
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On account of the 0 in the lower right element of the global Stokes matrix (16) in the mixed 
method, the matrix is singular, which reflects the well-known fact that the pressure in the 
momentum equation can only be determined up to a constant. Because of this singularity, the 
homogeneous system (assuming the right-hand side f = 0) has non-trivial pressure solutions 
p # 0, which are the so-called pressure modes of the system (16). The understanding of the 
theoretical and numerical role of these pressure modes in FE solutions is one of the most 
intriguing issues in FE ana ly~ i s~ ' -~ '  and is by no means complete. As long as the pressure mode 
is just a constant, the solvability of the inhomogeneous system (16) is guaranteed via the 
Fredholm alternative and the discrete divergence-free condition QTu = 0 is globally satisfied. Of 
more concern are the pressure modes p # constant, the so-called spurious modes. Since they 
correspond to zero forcing, they have no physical meaning. Then, again via the Fredholm 
alternative, the inhomogeneous Stokes equations (16) have a non-trivial solution only if the 
right-hand side of equation (16) is orthogonal to a pressure mode. In the presence of spurious 
modes this might not be the case for arbitrary boundary conditions and the solvability of 
equation (16) might be impaired. Moreover, it can be shown" that a spurious pressure mode 
p # constant reduces the effective number of incompressibility constraints by one, i.e. produces 
a dual velocity field which is marginally compressible. Thus the presence of the spurious pressure 
modes is closely related to the violation of the div = 0 condition. This has also been supported 
by the 'no-flow tests' of Gresho et a1.36 and Pelletier et a1.26 

Since the form and nature of the Stokes matrix in equation (16) depend on the choice of the 
trial and interpolation spaces V" and P" for the velocity u and the pressure p respectively, the 
selection of an appropriate element is an important consideration. The generally accepted 
requirement for an eligible element is that the interpolation functions for the pressure be at least 
one order less than those for the velocity.21*22 Also, the velocity functions must be continuously 
differentiable in each element and continuous in the whole domain, whereas the pressure 
functions may be continuous (Taylor-Hood family) or discontinuous (Crouzeix-Raviart family) 
between elements. Other than that, the modeller is still faced with the above considerations of 
the pressure modes and of the div = 0 condition. 

Because a rigorous mathematical proof of the theoretical performance of a particular finite 
element for the incompressible Stokes problem (16), let alone the full Navier-Stokes problem, 
is still lacking, often some more heuristic arguments provide help. Among these the concepts of 
incompressibility constraint counting and the constraint ratio r have been found useful.23 The 
constraint ratio is defined as r = neq/nc ,  where neq is the total number of velocity equations after 
boundary conditions have been imposed and n,  is the total number of incompressibility 
constraints as specified by the pressure nodes. For many cases with a two-dimensional mesh 
the optimal value for Y is r = 2, in which case the div = 0 condition is sufficiently enforced while 
still allowing a sufficient degree of freedom for the displacements (velocities). Values of r < 2 
( I  > 2) indicate too many (too few) incompressibility constraints. In the extreme case r < 1 
so-called 'locking' of the mesh occurs and only the trivial (locked) solution u = 0 is obtained. 
While constraint counting has no theoretical support, it is often helpful in comparing elements 
for many flow problems. 

Another related but rather poorly understood aspect in practice is the Ladyzhenskaya- 
Babuska-Brebbi (LBB), inf-sup or div-stability condition21q23924 of a particular class of 
elements, defined as 

where T > 0 is arbitrary. LBB essentially ensures that when the size h of the elements goes to zero, 
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the discrete computed velocity of the Stokes problem is truly solenoidal, i.e. the div = 0 condition 
is satisfied. Moreover, LBB guarantees that the divergence term b(vh, 4’9 in equation (20) goes 
to zero faster than the velocity, so that mesh locking will not occur. The other important 
consequence of LBB is that convergence rates for the sum of the velocity and pressure can be 
exactly estimated in the space Vk, whereas if LBB is not satisfied, this is only possible in the 
space Z of the divergence-free functions.* ’ Although LBB guarantees optimal convergence of 
the finite element solution, it is only a sufficient and not a necessary condition, i.e. optimal 
convergence may be achieved in some instances without LBB being ~atisfied.~’ Therefore the 
LBB condition appears to be more of theoretical than of practical As pointed out 
by Pelletier et a1.,26 the LBB condition does provide information on the above issue of the 
spurious pressure modes but not on the enforcement of the div = 0 condition. A typical example 
is the notorious bilinear velocity, constant pressure (Q,-P,)  element, which violates LBB, 
conserves mass (b(v”, 4”) = 0) and has an optimal value of the above constraint ratio r = 2, but 
shows the disastrous checkerboard mode for the press~re .~’ .~’  Nor does the LBB condition 
define an optimal value of r,  so that an element with r > 2 may satisfy the LBB condition yet 
not enforce the incompressibility condition adequately. This is illustrated in Table 11, where the 
constraint ratio r and the div-stability of the elements available in NACHOS-I1 are summarized. 
On the basis of the LBB condition, the nine-point quadrilateral Langrangian element QUAD9 
with biquadratic velocity interpolation appears theoretically to be preferable over the eight-point 
quadrilateral element QUAD8 with discontinuous pressure approximation which does not 
satisfy LBB. However, the situation is less clear for the eight-point serendipity element QUADS 
with continuous pressure, since this one satisfies LBB too. Since the rate of convergence derived 
for all these elements is identi~al,’~ none of them appears to have any theoretical advantage. 
On the other hand, the constraint ratio r for the QUAD8 element is closer to the optimal 
value r = 2 than that for the QUAD9 element and therefore the incompressibility constraint 

Table 11. Constraint count r, div-stability (LBB) and discrete divergence DDIV obtained with the 
mixed method or the penalty method ( E  = lo-’’) and the three scaling options used (Pr-Ra, equations 
(6a) and (7a); Pr-Gr”*, equations (6b) and (7b); new Pr-scaling, equations (6c) and (7c)) for the axisymmetric 
plume model with Tarn,, = 0.1 “C for several element types available in NACHOS-11. Notations are: 
QUADS, the eight-point quadrilateral serendipity element with incomplete biquadratic velocity interpola- 
tion; QUAD9, the nine-point quadrilateral Lagrangian element with complete biquadratic velocity 
interpolation; cont. p ,  continuous bilinear pressure approximation (Taylor-Hood); disc. p ,  discontinuous 
bilinear pressure approximation (Crouzeix-Raviart). The last column depicts reference values for DDIV 

obtained in a Cartesian co-ordinate system 

Discrete divergence (DDIV) 

Axisymmetric Cartesian 

Element r LBB? Method Pr-Ra Pr-Gr”’ P r  (new) P r  (new) 

QUADS, disc. p 2 No Mixed 10-10 10-12 1 0 - 1 3  10-14 
Penalty 10-6 10- 5 10-11 10-12 

QUADS, cont. p 6 Yes Mixed 10-6 10- 3 10- 7 10-8 

QUAD9, disc. p 2f Yes Mixed 1 0 - ~  1 0 - 1 2  10-12 10-14 
Penalty 10-5 10-1‘ 10-12 

QUAD9, cont. p 8 Yes Mixed 10-6 10- 3 10-7 10-8 
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should theoretically be better enforced by QUAD8 than by QUAD9. Using the same arguments, 
the discontinuous pressure approximation should be more effective for modelling the divergence- 
free condition than the continuous pressure approximation. This has been demonstrated for the 
‘no-flow’ steady state Boussinesq test problem of Gresho et al.36 by Pelletier et ~ 1 . ~ ~  It has been 
explained by the latter authors in terms of the dual role of pressure in both enforcing the 
continuity equation and balancing the viscous and buoyancy terms in the momentum equation. 
To be able to fulfil both these requirements, the pressure space has to be sufficiently rich. This 
is better guaranteed by the discontinuous (Q2-P1) than by the continuous (Qz-Q1) pressure 
element. 

Many of the above considerations also hold for the penalty method. Here the discrete 
divergence-free constaint QTu = 0 is enforced by means of the penalty function P in the form 

P = +Ku2 - UTf + f h T Q T Q ~ ,  (21) 

where A = 1 / ~ .  Minimization of equation (21) provides equations (17) and (18). It follows that 
the smaller E is, the better the incompressibility is enforced. However, too small an E will 
deteriorate the condition of the total stiffness matrix in equation (17). 

4. THE DISCRETE DIVERGENCE 

As suggested by the discussion in the previous section, most of the numerical intricacies in the 
FE modelling of incompressible Stokes flow are related to the satisfaction of the continuity 
equation or the incompressibility constraint. This has been clearly supported by the FE 
simulations of Stokes flow by Pelletier et ~ l . , ’ ~  who demonstrate that the FE solutions become 
unreliable and physically spurious whenever the numerically computed ‘discrete divergence’ 

DDIV = maxlQTuhI (22) 
nel 

becomes too large. In equation (22) QT is the matrix equivalent of the divergence operator (see 
equation (13)), uh is the computed velocity vector on an individual element and the maximum 
is taken over all elements of the mesh (nel). Pelletier et ~ 1 . ~ ~  regard the discrete divergence DDIV 
as a powerful diagnostic tool for the evaluation of an FE solution and recommend that it be 
computed in any FE simulation. FEM theory predicts that the discrete divergence should be of 
the order of machine zero for the Cray-YMP used for the calculations) for the integrated 
FEM and of order O(E) for the penalty FEM for a solution demonstrating acceptable mass 
conservation. In the following tests of the mixed and penalty FEMs, DDIV would generally 
increase by one or two orders of magnitude before a problem, either in the form of a matrix 
ill-conditioning error or an unrealistic value of velocity or temperature, occurred. Experience 
has shown that the change in DDIV is a conservative diagnostic, i.e. an increase in discrete 
divergence does not always signal a problem. Nevertheless DDIV has been found to be a valuable 
indicator of which method and element are best suited for modelling the plume problem and 
has guided us in the development and evaluation of some of the new techniques proposed in 
later sections. 

5 .  NUMERICAL SIMULATIONS BY MEANS OF THE ORIGINAL NACHOS-I1 CODE 

From this point on we will focus on our goal of the finite element modelling of buoyant creeping 
plumes with a strong temperature dependence of the viscosity (see Figure 1). In the following 
sections we report results of simulations using some of the solution and element options of the 
original NACHOS-I1 code. 
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EfSects of element choice 

From the earlier discussion of the theoretical performance of the various elements we 
concluded, on the basis of the div-stability condition and the heuristic argument of the constraint 
count, that elements with discontinuous (disc.) pressure interpolation functions (Crouzeix-Ra- 
viart) have better divergence constraint properties than those where the pressure is continuous 
(cont.) across elements (Taylor-Hood) (see Table 11). The discrete divergence calculations using 
the mixed method confirm these characteristics (Table 11) on a sample grid for the plume model 
with qmb = 0.1 "C. For both the QUAD8 and QUAD9 elements the disc. p-version has a smaller 
discrete divergence DDIV than the cont. p-element. Note that the DDIV values for the QUAD8 
and QUAD9 elements are comparable. The heuristic constraint count argument favours QUAD8 
(and it has a slightly smaller DDIV) and the theoretical LBB condition favours QUAD9 
(particularly for mesh refinement). These and similar results for other ambient experimental 
conditions (viscosity contrasts) favour the use of the disc. p-element in plume FE modelling. 

Nevertheless, in spite of the minimal values of DDIV obtained with the disc. p-elements for 
the sample computations of Table 11, DDIV would often grow as the plume solution progressed 
in time. Gradual growth was expected owing to the larger values of the velocity u and the 
accumulation of round-off errors. However, often DDIV would remain small for a period of 
time, then increase sharply (usually by at least two orders of magnitude) before an error occurred. 
Such a rapid growth served as a good indicator that the solution would encounter an 
ill-conditioned matrix error or that the computed temperature and velocity would increase to 
unrealistically large values. 

The integrated (mixed) method 

The disastrous behaviour of the discrete divergence DDIV obtained for the plume model with 
K m b  = 0.1 "C using the mixed method and the QUAD8, disc. p-element is illustrated in Figure 
4 (top). Following the large increase in DDIV at time steps 10 (for Pr-Ra-scaling) and 500 (for 
the new scaling, see below), the temperature rose to an unrealistically large value. 

The penalty method 

As mentioned earlier, the selection of the appropriate penalty parameter E is crucial in 
the penalty Too small an E will ill-condition the problem and too large an 
E will introduce too much compressibility. For example, for plume simulations with Tam,, = 25 "C 
and using the QUADS, disc. p-element, the following values ( E ,  DDIV) were obtained- 
(10-l5, - lo-'), (10-l4, - lo-') and - 10-3)-illustrating the large sensitivity of DDIV 
to E.  The approach used to determine the most appropriate E was to make several sample runs 
and observe which number gave the best DDIV behaviour. As usual, early time steps in the 
simulation showed great promise, but the DDIV would increase sharply at  some stage later and 
the solution soon encountered an ill-conditioning error. By using a fine mesh and varying the 
penalty parameter throughout the simulation, we were able to generate one case that showed 
plume lift-off. The results of this simulation are qualitatively comparable with the data given in 
Figures 7 and 8 and with the experimental data. Quantitatively, this penalty simulation 
experienced unrealistically large fluctuations in temperature. The expense of this trial-and-error 
method and the mediocre results convinced us not to pursue this technique on additional 
problems. Figure 4 (bottom) illustrates this performance for a plume simulation with Kmb = 
0.1 "C using E = lo-''. 

We conclude from the above results that the neither the mixed nor the penalty method as 
used in the original NACHOS-I1 code is able to model the creeping thermal plume owing to the 
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Figure 4. Discrete divergence DDIV for Kmb = 0 1  "C as a function of the number of time steps (each of 11.3 s duration) 
for the mixed method (top) and the penalty method ( E  = lo-'') (bottom) and using the QUAD& disc. p-element. In 
each plot the short vertical line which ends after about 10 time steps corresponds to the classical Ra-Pr-scaling of the 

governing equations and the other curve to the new scaling (Section 6) 

inadequacy of both methods to satisfy sufficiently the div = 0 condition. In the following sections 
we report on some FE modifications and new approaches we have taken to attempt to achieve 
this goal. 

6. NUMERICAL SIMULATIONS: TOWARDS THE GOAL TO 
ENFORCE THE DIVERGENCE-FREE CONSTRAINT 

Improving the condition of the FE equations: effects of scaling 

The positive numerical implications for DDIV of the new Pr-non-dimensionalization discussed 
earlier become clearer when viewed from the linear algebraic point of view, where it has the effect 
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of equilibrating the different magnitudes of the buoyancy B and the pressure matrices Q and B 
and the two viscous matrices K and L in equation (13) respectively. Assuming a consistent matrix 
norm 11.11 (which can be any Frobenius norm,38 particularly I ,  or l z ) ,  one can write 11Kll = IIAIBII, 
llQll = IIA,BII and llLll = llA3Bll, with A,, A,, A3 << 1 in equation (13). Then postmultiplying the 
global matrix in the system 

to be solved at each time step (assuming the convective terms C(u) and D(u) to be included in 
K and L respectively) by the diagonal matrix diag(l/A,, l/&, l /A3)  results in a rescaled system 
of equations of the form 

where u* = Alu, p*  = A,p and T* = A3 T are new, rescaled variables. 
The Pr-scaling approach resulted in a marked improvement in the performance of the FEM 

code over that with the earlier Pr-Ra-scaling by forcing the terms in the matrices representing 
pressure, buoyancy and viscosity to be of about the same size and thus ameliorating the condition 
of the matrix. For example, whereas in the Pr-Ra-scaling with Ra = 6.5 x lo6, values of 
( -  lo-', - 10') were found for a typical element (K, B) in equation (23), i.e. a difference of order 
0(104) in magnitude, for the new scaling the corresponding values are ( -  loz, - 10'). Table I1 
illustrates the ensuing positive effects on the discrete divergence, which is also reduced by several 
orders of magnitude. Nevertheless, in spite of these lower values for DDIV, Figure 4 reveals a 
similar disastrous behaviour of DDIV with simulation time and eventually numerical break- 
down. Although this occurs at a much later time, demonstrating the advantage of the new scaling 
technique, the latter is still unable to successfully model a realistic thermal plume. For 
comparison, Table I1 includes a column representing the results of using the Pr-Gr'/'-scaling 
(equations (6b) and (7b)) commonly used in engineering fluid mechanics. These results indicate 
that while this scaling would be acceptable for our problem, a slight improvement is often shown 
with the new scaling. Additionally, since we anticipate using this approach in Ra-Pr-ranges 
where the Pr-Gr'"-scaling may not be as favourable, we prefer to use the new scaling which is 
consistent with the physical processes involved (note that for large Gr the buoyancy term is 
much larger than the viscous term in equation (6b)). 

Use of an iterated penalty method 

As the next step in our goal to enforce the div = 0 condition, we have implemented an iterated 
penalty method which has been proposed for the FE solution of Stokes The iterated 
penalty approach is based on the dual role of the pressure (see Section 3) and attempts to better 
satisfy the incompressibility condition by an iterative, improved computation of the pressure. 
The algorithm used can be written as follows.z' 

1. Given p"-l, solve for u" and T" as 

B(T) )(u) - - (FO + Qp"-'> . 
(25) 

D(u)+ YT) T G(T, u) 
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2. Update 

3. Repeat steps 1 and 2 until the discrete divergence is small enough (O(E)). Note that the 
traditional penalty method is imbedded in this method when p o  = 0 and steps 2 and 3 are 
performed only once. 

Results of numerical experiments with this method were generally poorer than those found 
with a full augmented Lagrangian formulation, to be described in the following section. In fact, 
viewed from the standpoint of constrained o p t i m i z a t i ~ n , ~ ~ * ~ ~  the incompressibility is not 
enforced enough. This was also corroborated by the results of the numerical simulations, which 
often showed divergence of the iteration procedure and a large increase in DDIV as time 
progressed. 

Use of an augmented Lagrangian method: the Uzawa algorithm 

The technique of the augmented Lagrangian has been proposed, particularly by the French 
FE s ~ h o o 1 , ~ ~ * ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~  as a powerful method for enforcing incompressibility in steady state 
Stokes flow. Fortin and Fortin" have extended it to the full, non-linear, steady state Navier- 
Stokes equations. 

The augmented Lagrangian Laug for the Stokes problem is defined in discrete matrix 
formulation as 

Laug = L + PIQTu12, (27) 

were L is the earlier defined regular Lagrangian (19) for the mixed (integrated) method. For the 
present non-linear NS problem the term iKuZ in equation (19) is to be replaced by the Jacobian 
obtained from a quasi-linearization of the NS equation by means of a Newton method for 
example. Equation (27) illustrates that the div = 0 condition is enforced by penalizing the regular 
Lagrangian with the discrete incompressibility QTu, with /? as the penalty or Lagrangian 
parameter. 

For the minimization of Laug in (27), the Uzawa algorithm,26*28~29*39 which is a special form 
of conjugate gradient te~hnique, '~  has been implemented. In the present case of the Boussinesq 
problem the iteration cycle for the Uzawa algorithm is written as 

M o au/at c(u) + ~ ( u ,  T) + ~ Q M ;  ~ Q T  W) )( u )  - - (W) + QP"- '), (28) 

(29) 

( 0  N)(aT/at)( 0 D(u) + L(T) T W, u) 

p" = p"- ' + yM, 'QTu", 

where p and y are two freely (!) chosen Lagrangian parameters. There has been some discussion 
on the proper choice of p and y, but the final jury is still out. As proven by Fortin and GlowinskiZ9 
and G l ~ w i n s k i , ~ ~  for sufficiently large p the convergence rate of the cycle (28), (29) is of order 
O( 1/B) and the optimal y-which has to be determined from the eigenvalue spectrum of 
K-'QTQ-is p - y. This has been assumed in the following simulations and without loss of 
generality we set B = y = 1 / ~ ,  with E the penalty parameter employed earlier. 

This Uzawa method, which is straightforward to implement in most FE programmes, seemed 
very promising, particularly in the light of the excellent results obtained by Pelletier et ~ 1 . ~ ~  for 
the Stokes problem. They stated that for small E ,  convergence of the discrete divergence DDIV 
to O(E) occurred with only one or two iterations. Rapid convergence is necessary for this method, 
since the global system (28) must be solved for each penalty iteration. Although some computa- 
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tional gain could be achieved in the present study by storing the factorized stiffness matrix in 
equation (28), the cost advantages of the penalty method over the ordinary mixed method are 
lost if more than two or three iterations are used. 

Initial testing of the Uzawa algorithm showed very good results for short periods of time. 
Similarly to the behaviour of the regular penalty method, the value of E greatly affected the 
performance of the algorithm. For the q m b  = 25 "C benchmark plume problem on a 15 x 20 
grid with At = 0.0003, E = 10 x between five and 
seven iterations and E = 1 x only one iteration per time step to reduce DDIV to O(E). 
This sensitivity to E is also reflected in the rate of convergence. Whereas after - 100 time steps 
E = 1 x decreased DDIV by roughly one order of magnitude per iteration, the con- 
vergence rates for E = 3 x are only -18% and -10% per iteration 
respectively. These observations appear to be consistent with those of Pelletier et ~ 1 . ~ ~  and Fortin 
and Glo~ insk i . ' ~  

Extensive testing of the Uzawa algorithm for the plume problem, however, consistently 
demonstrated that the performance deteriorated as time progressed. Simulations that started 
with only one or two iterations per time step would often require four or five iterations after 
100-200 time steps. A typical example was a simulation of the Tam,, = 25 "C experiment on a 
25 x 30 grid with At = 0.01. Whereas the first 70 time steps usually required only one Uzawa 
iteration per time step, the subsequent 50 time steps used already five or six iterations. This 
resulted in an overall CPU time for the Uzawa algorithm of 48 min as compared with only 16 
min for the ordinary mixed method. 

Figure 5 (top) illustrates the rate-of-convergence changes as the time integration progresses 
for the (more extreme) Tarn,, = 0.1 "C case and employing E = 1 x Since the convergence 
was highly dependent on the choice of E, a single acceptable value for E was never determined 
for an entire simulation. These results coincide with comments made by Fortin and G l o w i n ~ k i ~ ~  
for similar non-linear problems regarding the sensitivity of the Uzawa algorithm to the choice 
of E.  We found that without an adequate choice of E the convergence was too slow to be 
economical when compared with the mixed method. These poor results led to abandonment of 
the Uzawa technique as described here. However, one possible option to be investigated in future 
studies to remedy the present negative situation will be the use of an adaptive E as time progresses. 

required 10 iterations, E = 3 x 

and 10 x 

Use of a multistep Newton method 

Although both the new scaling option and the Uzawa algorithm allowed us to further 
approach our goal of enforcing the div = 0 condition, they are incapable of successfully 
simulating a thermal plume under the extreme conditions observed in Figure 1. The reasons for 
this inadequacy may be manifold, but it is likely that many of the theoretical and numerical 
observations which have been made primarily for isothermal Stokes f10w,26-31 may not be valid 
for the present nonlinear Boussinesq plume problem. 

As a final resort we investigate how far the non-linearity of the coupled flowbeat transport 
problem affects the performance of the present FEM. NACHOS-I1 uses Newton's method to 
solve the non-linear matrix system (1 3). Newton's method is quadratically convergent provided 
that the initial guess is close enough to the solution. Since NACHOS-I1 uses a predictor/correc- 
tor-type time integration, the predicted solution value will generally be close to the correct 
solution for each time step. This assumption provides the basis for NACHOS-I1 to use a one-step 
Newton method for the solution of the non-linear system. This approach appears to be also 
justified from the results of the numerical experiments of Gresho et though for isothermal 
flow. As discussed in Section 3, the non-linearity of the plume problem is accentuated in the 
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present FE formulation by the specific, implicit coupling of the temperature in the energy 
equation to both pressure and velocity in the momentum equation over the presence of the 
non-linear buoyancy submatrix B(T) in equations (13) and (14). 

The modification made to NACHOS-I1 is a simple extension of the base logic. After the first 
Newton iteration the discrete divergence DDIV is used as a test of convergence. If DDIV is too 
large, an additional Newton iteration is completed. The process is repeated until DDIV is small 
enough (of the order of machine E for the mixed method, with adjustments made for round-off 
error and higher velocities as the simulation progresses). 

This multistep Newton method in conjunction with the new scaling gave acceptable results 
as reported in the next section. Since most time steps normally required only one Newton 
iteration, the extra cost was insignificant. Because of the quadratic rate of convergence of the 
Newton method, an additional Newton subiteration during a time step reduced the DDIV by 
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about one or two orders of magnitude, so that usually only two or three iterations are needed 
to decrease DDIV sufficiently. This is illustrated in Figure 5 (bottom) for the Tarn,, = 0 1  "C case 
using the mixed FEM. 

7. NUMERICAL SIMULATION OF PLUME EXPERIMENTS 

The goal of the numerical simulations was to produce transient plume initiation and growth in 
an economical fashion that reflected the basic physics of the problem. Comparison of the 
simulation with experimental results would serve as valuable validation of the model. The 
arguments and computational data presented in the previous sections suggest that the best 
approach available for solving the thermal plume problem is to use the discontinuous pressure 
element in a mixed FEM employing the new scaling (non-dimensionalization) and the new 
multistep Newton method. We employed both QUADS and QUAD9 elements in our mesh 
refinement studies. On coarser meshes and the mesh chosen for the simulation we found 
the QUADS element to be superior in terms of time step flexibility and total run time for 
the grids used in the simulation. For example, QUAD9 required a time step one-tenth the 
size of QUADS for the run to be successful on the same grid, resulting in 7.5 h of CPU time 
for the QUAD9 element versus only 45 min of CPU time for QUADS. This small time step, in 
addition to having more equations to solve owing to the additional node, made QUAD9 more 
than 10 times as expensive to run for the cases we considered. For the fine-mesh validations the 
QUAD9 element was more stable owing to its satisfaction of the LBB condition. The results of 
the following simulations show that through the combination of these options the FEM is able 
to accurately predict the growth and rise of some of the observed laboratory plumes of 
C~ul l ie t te .~  

Ambient temperature of 25 "C 
A mesh with 15 grid points in the radial and 50 grid points in the vertical direction was used. 

The node spacing in the radial direction was refined towards the axis of the plume above the 
heater. For all cases the maximum element size and time step were determined by the 
fundamental length and time scales used for the problem. On the basis of the theoretical accuracy 
of the FEM, these choices also ensured that the numerical resolution was greater than the error 
in the experimental measurements. The heater was represented by specifying a constant heat 
flux along the bottom of the first four elements. First-order Euler time integration was used 
early in the simulation to damp out temporal oscillations in the solution during the rapid heater 
initiation. After this start-up phase the more precise second-order time integration was employed 
(see Section 2). Using snapshots of the temperature contours for the delineation of the plume 
extension (similar to those shown in Figure 8 for the qrnb = 0.1 "C plume case), the height versus 
time, h(t), was visually determined for the top of the ball. The results obtained by measuring the 
location of the T = 25 "C contour are shown in Figure 6 (bottom) and are to be compared with 
those obtained from the experimental data (Figure 6,  top). Note that since the numerical heater 
start-up was somewhat slower than the experimental one, the numerically obtained height values 
are somewhat less than the experimental ones during this initial stage of the simulation. At later 
times both plots display a relatively constant speed throughout most of the rise. For the 
experimental data this average speed is 0.055 cm s-', whereas the numerical simulation delivers 
0.056 cm s -  '. Thise results agree within the error tolerance of the experimental data and thus 
demonstrate the power of the proposed FE technique. 
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Figure 6. Height of the plume head as a function of time for the xmb = 25 "C plume case: top, experimental results; 

bottom, numerical results 

Ambient temperature of 0.1 "C 

A 15 x 50 mesh similar to the previous Kmb = 25 "C case was also used here. However, a 
time-dependent heat flux boundary condition was used along the bottom of the first three 
elements to simulate a realistic heater start-up. The heat flux was increased gradually over a 
time period of 1.3 hours to the full power used in the experiment. This gradual increase, along 
with the damping from the Euler time integration, smoothed large temporal oscillations in the 
early steps of the simulation. 

This slow heating (which is less than the experimental one but was necessary to dampen 
temporal oscillations during the onset of the plume) also shifted the plots of height versus time 
(measured from the T = 15-4 "C contour) further apart (compared with the Tarn,, = 25 "C case) 
(Figure 7). However, once full heater power is achieved in the numerical simulation, the model 
fits the experimental behaviour very well. The average speed of the plume confirms this 



6C 

40 

20 

0 

20 

FINITE ELEMENT ANALYSIS OF THERMAL PLUMES 

Experimental Result 

slope - ,0055 

slope - ,0053 
' 

0 50 100 150 200 
time( min) 

Numerical Result 
hetohi of !OD (cm) 

21 1 

observation since it agrees to within experimental accuracy-the experimentally and numerically 
determined speeds are 0.0055 and 0.0053 cm s - l  respectively. Figure 8 shows snapshots of the 
simulated plume for four different time steps. In addition to the linear rise, one also observes 
an increase in the radius of the ball, which, however, as shown by Coulliette,' follows a more 
complicated power law. Efforts are under way at present to use this information in an asymptotic 
scaling analysis of the thermal plume. 

Ambient temperature of -26.1 "C 

No successful runs were completed for this extreme temperature contrast between ambient 
medium and plume interior which produces a viscosity contrast of order O(107). The resulting 
large differences in the magnitudes of the elements in the global stiffness matrix corresponding 
to viscous forces (matrix K in equation (13)) created too much ill-conditioning and subsequently 
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Figure 8. Snapshots of the plume temperature contours for the TIrnb = 0.1 "C plume case for four times, 13, 2.0, 2 5  and 
3.1 h (from left to right). Axis lengths are non-dimensional (using the new scaling of Section 6)  and are to be multiplied 

by a factor of 1.58 to get real dimensions. Only about one-third of the total width of the model is shown 

caused failure of the solution process. Note that the earlier proposed new scaling does not 
balance such differences on an element level within the viscosity submatrix. Such an algebraic 
scaling of elements has been suggested by Pelletier et for the solution of Stokes flow with 
large viscosity variations and will be investigated in the future. 

8. CONCLUSIONS 

Despite access to several standard element and solution options, the general-purpose Galerkin 
finite element package NACHOS-I1 proves inadequate to simulate experimentally observed 
thermal plumes in a medium with highly temperature-dependent viscosity. Extending the work 
of earlier steady state, isothermal studies in Cartesian geometry to transient, variable tempera- 
ture, axisymmetric cylindrical geometry, we find that the computed estimate of divergence 
represents an inexpensive and valuable diagnostic tool for the qualitative and quantitative 
evaluation of the numerical solution process. Our investigation of several element and solution 
options reveals that many of the theoretically predicted characteristics of certain types of finite 
elements and scalings may not necessarily translate into a corresponding numerical behaviour. 
We conclude that the combination of proper scaling (based on the physics of the problem) and 
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a multistep Newton method is the most effective, but yet not universally satisfactory, in modelling 
this difficult problem. 

Our investigations also suggest possible directions for future research. The Uzawa algorithm 
showed promise in enforcing incompressibility at low cost. A modified form of the Uzawa 
algorithm using a variable penalty parameter could be a fruitful approach. Since the coupling 
of the energy equation (3) and the momentum equation (1) might accentuate the overall 
non-linearity of the plume problem, solving the momentum and energy equations consecutively 
may improve the solution characteristics, but most likely at  the expense of other numerical 
improprieties. Finally, scaling the equations at  the element level in a fashion similar to what we 
have done at the global level should reduce the ill-conditioning of the global stiffness matrix 
due to large viscosity contrasts and allow even larger viscosity contrasts to be modelled. 
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